Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(2)2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35205327

RESUMO

MicroRNAs (miRNAs) are short non-coding RNA molecules acting as important posttranscriptional gene and protein expression regulators in cancer. The study goal was to examine VEGFA (vascular endothelial growth factor A) expression in hepatocellular carcinoma (HCC) cell lines upon transfection miR-612, miR-637, or miR-874. Methods: MiR-612 mimics, miR-637 mimics, or miR-874 inhibitors were transfected using Lipofectamine RNAiMax in both HCC cell lines, HepG2 and HuH-7. Real-time PCR, Western blotting, and ELISA methods were used to evaluate VEGFA regulation by the miRNAs. Results: Gene and protein expression levels of VEGFA were down-expressed in both cell lines, HepG2 and HuH-7, transfected with miR-612 or miR-637. Transfection with miR-874 inhibitor showed an increase in VEGFA gene expression in HepG2 and HuH-7 cell lines; however, no regulation was observed on VEGFA protein expression by miR-874 inhibition. Correlation analysis between miRNAs and VEGFA protein expression showed that miR-637 and miR-874 expression present inversely correlated to VEGFA protein expression. Conclusions: VEGFA was down-regulated in response to hsa-miR-612 or hsa-miR-637 overexpression; however, the modulation of VEGFA by miR-874 was observed only at the gene expression and thus, needs further investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Neurol India ; 69(1): 32-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642267

RESUMO

The overexpression of the amyloid precursor protein (APP) gene, encoded on chromosome 21, has been associated in Down syndrome (DS) with the development of early-onset Alzheimer's disease (EOAD). The increase in APP levels leads to an overproduction of amyloid-ß (Aß) peptide that accumulates in the brain. In response to this deposition, microglial cells are active and generate cascade events that include release cytokines and chemokine. The prolonged activation microglial cells induce neuronal loss, production of reactive oxygen species, neuron death, neuroinflammation, and consequently the development of Alzheimer's disease (AD). The intrinsically deficient immune systems in people with DS result in abnormalities in cytokine levels, which possibly contribute to the development of neurodegenerative disorders such as AD. Knowledge about the biomarkers involved in the process of neurodegeneration and neuroinflamation is important for understanding the mechanisms involved in the incidence and the precocity of AD in individuals with DS.


Assuntos
Doença de Alzheimer , Síndrome de Down , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Síndrome de Down/complicações , Síndrome de Down/genética , Humanos , Microglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...